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Abstract: The numerical approach for determination of influence of deformation of the gas bubble 
(radius 0.74 mm) on added mass coefficient in (i) steady-state conditions and (ii) during approach to the 
horizontal wall, is proposed. It is shown that the bubble deformation can be tuned numerically (within 
the range 1.06 - 1.88) via proper variations of the Laplace pressure, without changing the bubble radius. 
Influence of the bubble deformation on its motion parameters is discussed and compared to theoretical 
predictions regarding the bubble drag coefficient and Reynolds number. Moreover, the approach 
allowing determination of the added mass of rising bubble, on the basis of variations in fluid kinetic 
energy, is described. It is shown that calculated added mass variations strongly depends on the 
interplay between (i) the bubble deformation ratio and (ii) its rising velocity. This effect is especially 
important for added mass of a gas bubble approaching a solid wall, because it can affect the kinetics of 
drainage of the separating liquid film formed under dynamic conditions, when Re >> 1. 
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1. Introduction 

Behaviour of bubbles in viscous fluid is of interest in many areas of fundamental physics and 
engineering where bubble dynamics is critical for optimization of a variety of engineered processes 
(Sangani et al., 1991). Gas-liquid contacting is one of the most common and important phenomena 
encountered in environmental applications, the chemical process industry, the petroleum industry, and 
mineral processing (Kulkarni and Joshi, 2005). For pure liquids, where the liquid/gas interface is free 
of adsorbed molecules, it is well established that the motion of the bubble is influenced mainly by bubble 
size, density difference between liquid and gas phases, and liquid viscosity. Immediately after 
formation in unbounded fluid the bubble accelerates due to the action of buoyancy and gradually 
reaches terminal (constant) velocity. For constant bubble size and invariable density and viscosity of the 
liquid, the surface tension is the most crucial factor affecting the bubble shape and rising velocity. Levich 
(1962) in his famous, classical book wrote that: "(...) The greater the surface tension of the liquid, the less 
pronounced is the deformation of the drop. The velocity of fall, therefore, is higher for particles which have greater 
surface tension and become less flattened (...)". Although he wrote about drops, this conclusion is valid also 
for the gas bubble, because the density difference between inner and outer phases is the only 
dissimilarity. The Levich’s conclusion about higher rigidity of the bubble against liquid flow, causing 
smaller deformations of a bubble surface, is a consequence of higher Laplace pressure, which increases 
proportionally to the surface tension of the liquid. 

Any motion of a fluid induced by a body moving through (bubble, for example) is associated with a 
certain amount of kinetic energy (T). For an accelerating body, increasing the velocity (u) causes an 
increase in T and, consequently, the energy that must be supplied to the fluid per unit time (dT/dt). In 
the simplest case of inviscid, idealized potential flow, this additional work is associated with the drag 
experienced by the body, (−𝐹# ∙ 𝑢), equal to kinetic energy changes, where FD is the drag force. This 
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"added drag" can be related to the so-called added mass because the drag force has the same dimensions 
as the force required to accelerate the mass of the body (Brennen, 1982). The concept of added mass was 
derived theoretically for an ideal, unbounded fluid having no resistance to shear stress (Milne-
Thomson, 1968). In the case of real, viscous fluid, the additional drag term related to fluid viscosity has 
to be considered. The moving body experiences an additional steady drag as a consequence of the work 
necessary to balance the steady rate of energy dissipation in viscous fluid. For steady-state motion 
(which is rectilinear) the drag and viscous energy dissipation in unbounded fluid should be constant 
(Zawala, 2016). When the bubble approaches to the obstacle this situation changes significantly - the 
added mass increases (Milne-Thomson, 1968; Zawala and Dabros, 2013; Klaseboer et al., 2014). The rate 
of added mass increase, related to the hydrodynamic interactions between the bubble and solid surface, 
is of crucial importance for kinetic of the bubble collision, bouncing and drainage of the separating 
liquid film formed between interacting interfaces. All of the existing models of added mass variations 
are valid only for very low Reynolds numbers (Re), under assumption of potential flow. Moreover, 
added mass variations were evaluated for spherical bodies. The added mass changes, however, can be 
much more complicated for higher Re. Due to the fact that in majority of technological and applied 
processes the Re are much greater than 1, knowledge about influence of the bubble motion parameters 
on the added mass variations is very important. This was underlined recently by Simcik and Ruzicka 
(2013), who shown the influence of approaching bubble deformation on its added mass coefficient 
variations, calculated for the bubble acceleration.  

The present work describes the numerical studies on influence of the bubble deformation on its 
motion parameters and added mass variations in steady-state conditions and during approach to a 
horizontal no-slip wall. After Levich (1962), the deformation of the bubble of constant size is tuned via 
changing the Laplace pressure values (pressure inside a bubble) in a liquid of physical properties 
(density, viscosity) equal to the properties of water. Influence of the bubble shape deformation on drag 
coefficient, terminal velocity and added mass is calculated for free rise. The calculations, validated on 
the basis of literature data, are mainly aimed to discuss the rate of increase of added mass of a bubble 
approaching to a horizontal wall, the parameter of crucial importance for kinetics of drainage of the 
liquid film formed under dynamic conditions (Klaseboer et al., 2014). 

2. Methods 

2.1. Governing equations and computational domain 

Modeling of a bubble in liquid was performed on the basis of numerical simulations (Gerris software), 
implementing finite volume solvers on a quad/octree adaptive grid together with a volume of fluid 
(VOF) interface tracking method and automatic mesh generation with adaptive mesh refinement 
according to a hierarchical tree-based discretization approach (Popinet, 2009; Fuster et al., 2009). A 
spatial discretization and numerical scheme used to solve the governing equations in the form (Popinet, 
2009): 

𝜌 '(u
()
+ (u ∙ ∇)u. = −∇𝑝 + ∇ ∙ (2𝜇Q) + 𝜎𝜅𝛿6n                                                      (1) 

∇ ∙ u = 0                                                                                (2) 
was described in detail in (Popinet, 2003; Popinet, 2009; Fuster et al., 2009). Eqs. 1-2 describe the 
conservation of momentum and mass of an incompressible, variable density liquid with deformation 
tensor Q defined as: 

𝐐 = 9
:
(∇u+ (∇u);) = 0                                                                  (3) 

where u = [u, v, w] is the fluid velocity vector,  r is the local density of the fluid,  µ is the local viscosity 
of the fluid (water or air), p is a pressure, t is time,  s is surface tension,  𝛿6 is a Dirac distribution function 
(expressing the fact that the surface tension term is concentrated at the interface), while  k and n are the 
curvature and normal unit vector to the interface, respectively. 

The calculations were performed in the computational domain, which was a liquid column of height 
100 mm and radius L equal to 2 or 10 mm (see Fig. 1), described by two-dimensional, cylindrical 
coordinate system. The bubble interface was reproduced and tracked using VOF approach. More details 
about the discretization parameters, mesh size and discretization algorithms can be found in (Zawala, 



43 Physicochem. Probl. Miner. Process., 56(6), 2020, 41-50 
 

2016). Slip boundary conditions were assumed at the cylinder sidewalls, while the top liquid/solid 
interface was fixed as no-slip. Initially, for t = 0, the center of spherical gas bubble of arbitrary chosen 
radius R = 0.74 mm was set 5 mm above the bottom column wall at its symmetry axis. The density and 
viscosity of the liquid and gas corresponded to water and air, respectively (i.e., 𝜌< = 1000 kg/m3 and 𝜇< 
= 1 ´10-3 Pa×s in case of water and 𝜌== 1.3 kg/m3 and 𝜇== 18 ´10-6 Pa×s for air). The surface tension of 
liquid was tuned properly to obtain different Laplace pressure values, hence various bubble 
deformation degrees - this effect will be discussed in details further. 

 
Fig. 1. Geometry of the computational domain 

The total kinetic energy of the system of volume W, i.e. energy of fluid motion induced by the rising 
bubble (T) was calculated as (Ceschia and Nabergoj, 1978): 

𝑇 = 0.5 ∫ 𝜌u:𝑑ΩD                                                                      (4) 

The rate of viscous dissipation of energy in the system (D) was calculated as (Bird et al, 2007): 
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The projected area of the rising bubble (A), used for estimation of the drag coefficient was evaluated 
as: 

𝐴 = 𝜋𝑅L:𝑅T:                                                                           (6) 
where Rv and Rh is the horizontal and vertical radius of the deformed bubble, respectively. The drag 
force (FD) acting at the bubble in steady-state conditions (after the moment, when terminal velocity was 
established) was calculated according to the equation: 

𝐹# =
#
IU

                                                                                (7) 

where ub was the bubble terminal velocity. Having FD values for the bubble with various degrees of 
deformation it was possible to calculate the drag coefficient (CD) as: 

𝐶# =
:∙WX

Y∙Z[∙IU\
                                                                           (8) 

The bubble deformation ratio (𝜒) in steady-state conditions was calculated as: 

𝜒 = ^_
^`

                                                                              (9) 

2.2. Bubble deformation tuning 

In order to calculate influence of the bubble deformation (c) on added mass variations, the Levich 
observation was used in the applied numerical approach (Levich, 1962). The radius of the bubble was 
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kept constant during all calculations, however, due to proper variations of the Laplace pressure values 
(pressure inside the bubble), the bubble deformation could be tuned, keeping all other physical 
parameters of the liquid and hydrodynamic boundary conditions at the liquid/gas interface constant. 
The liquid/gas interface was slip i.e. completely mobile, independently on the bubble deformation 
degree. The influence of gradually increasing Laplace pressure values on the bubble shape deformation, 
during free rise under steady-state conditions (terminal velocity) is illustrated in the Fig. 2. There are 
shown calculated bubble outlines (shapes). The detailed values on the Laplace pressure and 
corresponding bubble deformation values are given in Table 1, together with the values of the bubble 
terminal rise velocity. It has to be underlined here that deformation of the bubble could be tuned also 
by changing the bubble’s equivalent radius. However, the simulated motion of bubbles of significantly 
different dimensions would be difficult to compare and would require the algorithm of modification of 
the size of the computational domain and computational mesh refinement. By changing the pressure 
values, only, and keeping the Rb constant, it was possible to use constant volume of the computational 
domain, what allowed convenient results comparison and made the numerical calculations stable and 
converge. 

Table 1. Values of numerically tuned Laplace pressure and corresponding bubble deformation and velocity  
(L = 2 mm)} 

 Laplace pressure 
[Pa] 

c ub  
[cm/s] 

1 54 1.88 20.0 
2 68 1.81 22.9 
3 95 1.68 24.5 
4 135 1.56 27.6 
5 189 1.43 30.5 
6 270 1.35 33.5 
7 541 1.22 40.0 
8 1351 1.10 43.9 

 

 
Fig. 2. Numerically reproduced shapes of the bubble of Rb = 0.74 mm with different Laplace pressure, rising in 

pure water, under steady-state conditions (with terminal velocity) 

3. Results and discussion 

As seen in Table 1 and corresponding snapshots presented in Fig. 2, the bubble deformation during free 
rise under steady-state conditions decreases with increasing Laplace pressure, while the bubble 
terminal velocity follows opposite trend. The effect reproduced in numerical simulations is, therefore, 
consistent with the Levich’s conclusion (Levich, 1962).  

Fig. 3 presents variations in the total kinetic energy associated with the bubble motion (Eq. 4) as well 
as corresponding variations of 𝜒 for the bubble of different Laplace pressure values rising in liquid  
(L = 2 mm). Both the T and 𝜒 are presented in Fig. 3 as a function of time. As seen at t = 0 bubble is 
motionless (T = 0) and spherical (𝜒 = 1). The kinetic energy as well as deformation increases with time 
and start to be constant, i.e. the bubble reaches its terminal (constant) velocity. As could be expected, 
and already shown in Table 2, the highest bubble deformation is associated with the lowest value of the 
Laplace pressure. In turn, the final value of T reached for steady state conditions, (after bubble 
acceleration period and ub establishment) is the highest for the lowest bubble deformation (i.e. when the 
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Laplace pressure is high enough to prevent the bubble from deformation by the counter-flow of the 
liquid, keeping the bubble almost spherical).  

 
Fig. 3. Variations of (A) the total kinetic energy and (B) the bubble deformation during rise in liquid column of 

L = 2 mm (numbers in the legend correspond to the eventual values of the bubble deformation ratio) 

The bubble terminal velocities (ub) as well as T values calculated for steady-state conditions (as an 
average for the period where both values were constant in time) as a function of the bubble deformation 
ratios are presented in Fig. 4. The data obtained for L = 2 and 10 mm are presented there as points, while 
the dashed lines are fitted linear regressions. As was already mentioned above, both the bubble terminal 
velocity and kinetic energy decreases with decreasing Laplace pressure what, in turn, is related to the c 
increase. In addition, significant difference between the data calculated for L = 2 and 10 mm can be 
noted. For similar value of the bubble deformation ratio, the bubble terminal velocity is lower for  
L = 2 mm comparing to 10 mm. Similar effect can be seen for T values (Fig. 4B). This significant 
discrepancy between velocity of the bubble rising in tube of different sizes should be attributable to the 
so-called wall effect (Clift et al., 1978; Malysa, 1992; Khrishna et al., 1999; Mukundakrishnan et al., 2007), 
which was present in the considered system, despite the slip boundary conditions applied at the column 
side walls. As was shown by Clift et al. (1978) the resistance coefficient correction l, defined as a ratio 
of particle velocity in infinite fluid to its velocity in bounded fluid, depends on the ratio of bubble 
diameter to tube diameter (𝑆 = 2𝑅b/𝐿) and can be expressed as: 

9
e
= (1 − 𝑆:)9.g                                                                      (10) 

Khrishna et al. (1999) showed that the wall effect does not affect the motion of a bubble if S < 0.125.  In 
our experiments, for L = 10 mm the S = 0.074, so the condition for unbounded liquid was met. However, 
for L = 2 the S was much higher and equal to 0.37, what indicated that for the narrower tube the bubble 
motion was affected by the wall vicinity. In the case of L = 10 mm there was no influence of the side 
wall  presence  on  the  bubble motion.  It  is  worth  mentioning  here that for L = 10 mm and the Laplace  
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Fig. 4. Comparison of the bubble (A) terminal velocity and (B) kinetic energy associated with the bubble motion 
as a function of deformation, after establishment of the steady-state conditions - L = 2 mm full circles, L = 10 mm 

open triangles 
pressure value corresponding to the real case of the bubble rising in water of surface tension 72.4 
mN/m, both the bubble terminal velocity and the deformation was in excellent agreement with the 
corresponding values observed experimentally (Kosior et al. 2011), i.e. the 𝜒 = 1.54 and ub = 34.3 cm/s. 
Good agreement between simulated and experimental results indicates that, indeed, the wall effect in 
the case of L = 10 mm can be neglected. As seen in Fig. 4 influence of the wall effect for L = 2 mm is 
constant and independent on the bubble deformation. The linear regressions (dashed lines) fitted to the 
data for both L values are parallel, what means that the wall effect is scalable and can be considered by 
introduction of the proper scaling factor. In this particular case the scaling factor is equal to ca. 0.8. 

Fig. 5 presents the numerically calculated deformation of the bubble as a function of the Weber 
number (We), i.e the dimensionless number expressing the measure of the relative importance of the 
fluid’s inertia compared to its surface tension, which can be expressed as: 

𝑊𝑒 = :^UZ[IU
j

                                                                           (11) 

where s is an interfacial tension of the liquid/gas interface, given as 𝜎 = 0.5 ∙ Δ𝑃 ∙ 𝑅b . The ∆𝑃 is the 
Laplace pressure. The values of the We are compared in Fig. 5 to the relation estimated on the basis of 
experimental data by Legendre et al. (2012), who measured the bubble rising velocity and deformation 
in ultra clean water. He gave the following simple equation, which connects the bubble deformation 
with We values in water for the 𝜒 up to 3: 

𝜒 = (1 − 0.140625 ∙ 𝑊𝑒)p9                                                             (12) 
In addition, in Fig. 5 there are shown the data calculated theoretically by Klaseboer et al. (2011), who, 
on the basis of BEM simulations of potential flow with viscous effects, elaborated a model allowing 
prediction of terminal velocity of the bubble of different sizes. The terminal velocity values of the bubble 
of radius ranging between 0.6 - 2.2 mm given by this model (Klaseboer et al., 2011) were used to calculate 
the We (Eq. 11,  s = 73 mN/m (Klaseboer et al., 2011)), and was compared in Fig. 5 with	𝜒 given by Eq. 
12. In addition, the numerical data obtained from simulations are added there. As seen, the numerical 
data and the data calculated on the basis of Eq. 12 (both for values by Legendre et al. (Legendre et al., 
2012) and Klaseboer et al. (2011) are in pretty good agreement.  

 
Fig. 5. Comparison of the bubble deformation as a function of Weber number obtained from numerical 

simulations and taken from literature  

The values of drag coefficient as a function of the Reynolds number (Re) are presented in Fig. 6. The 
data obtained from Eq. 8 using simulated FD and ub values (for L = 2 mm) as well as those calculated 
from the Moore model (Moore, 1965) are compared there. According to the model described by Moore 
(1965) the drag coefficient of the rising bubble depends on the bubble shape deformation and can be 
calculated as (Rastello et al., 2011): 
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𝐶# = (rs
^t
) ∙ 𝐺(𝜒) ∙ '1 − 2.21 ∙ v(w)

√^t
.                                                     (13) 

where 𝐺(𝜒)and 𝐻(𝜒) are the geometrical factors calculated by Moore (Moore, 1965). The Re is given by: 

 
Fig. 6. Drag coefficient exerted on the bubble surface in steady-state conditions compared to theoretical 

calculations based on the Moore model  

𝑅𝑒 = :^UIUZ[
z[

                                                                         (14) 

while the 𝐺(𝜒)and 𝐻(𝜒) factors can be accurately approximated by the following relations (Rastello et 
al., 2011): 

𝐺(𝜒) = 0.1287 + 0.4256𝜒 + 0.4466𝜒:                                                  (15) 
𝐻(𝜒) = 0.8886 + 0.5693𝜒 + 0.4563𝜒:                                                 (16) 

As can be seen in Fig. 6 quite good agreement between simulated results and the data calculated 
according to the Eqs. 13-16 was obtained. The presented data show that the drag coefficient (drag force) 
increases with decreasing Re value. It means that the drag is higher when the bubble moves slower but 
also when it is more deformed. In addition, this comparison (Fig. 5 and 6) is a proof of validity of the 
numerically calculated relations between the bubble rising velocity, deformation and drag force. 

Every object (including gas bubble) accelerating in a liquid, experiences drag force related to the 
work done on the fluid. As a consequence, the apparent mass of the moving body increases and reaches 
constant value, when steady-state conditions are established. In the case of a rising bubble, it was shown 
that, for potential flow of inviscid fluid, the added mass (m) of the bubble can be given by the general 
expression (Brennen, 1982): 

𝑚 = 𝐶�𝑉b𝜌<                                                                          (17) 
where Cm is the added mass coefficient and Vb is volume of the bubble. For a spherical bubble it is well 
established that the Cm equals 0.5 (Brennen, 1982; Tsao and Koch, 1997; Klaseboer et al., 2001). This 
situation, however, is encountered only for small bubbles or low Re values. For larger bubbles rising 
with higher Re, the Cm is a function of bubble surface geometry. It was shown that, in the case of bubbles 
and drops in an unbounded medium, the added mass coefficient is a function of their axis ratio and can 
be expressed as (Tsao and Koch, 1997; Klaseboer et al., 2001): 

 𝐶� = �
:p�

                                                                          (18) 

with: 

𝛼 = :w\

w\p9
�1 − 9

�w\p9
∙ 𝑐𝑜𝑠p9 H9

w
K�                                                       (19) 

which, for 1 < c < 2.5, is well-approximated by the linear relation (Klaseboer et al., 2001): 
 𝐶� = 0.62𝜒 − 0.12                                                                (20) 

The kinetic energy of the fluid associated with the motion of the bubble rising with terminal velocity 
ub, considering the added mass, can be written as (Harper, 2001; Milne-Thomson, 1968): 
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𝑇 = 9
:
𝑚𝑢b:                                                                     (21) 

which, after rearrangement and comparison with Eq. 17, allows to compute the Cm for known T and ub 
values, according to the relation: 

𝐶� = :;
�
��^U

�Z[IU\
                                                                       (22) 

Fig. 7 presents the calculated value of Cm as a function of c on the basis of numerically determined T 
and ub values (for steady-state conditions). The data obtained for L = 2 and 10 mm are presented there. 
The solid line refers to the Cm calculated from Eq. 20. As seen, for L = 10 mm, i.e. in the case when the 
influence of proximity of the column walls on the bubble motion could be neglected (𝜆 → 1), the 
calculated values of Cm (Eq. 22) are practically identical to the theoretical predictions (Eq. 20).  

 
Fig. 7. Calculated added mass coefficient of the bubble as a function of deformation compared with the result of 

Eq. 20 (Klaseboer et al., 2001) 

As was already discussed, the wall proximity influences the added mass of the bubble. It is caused 
mainly by modification of the kinetic energy of the fluid induced by increase of the drag coefficient. In 
the case of bubble approaching to the horizontal wall the kinetic energy increases as a result of formation 
of intervening liquid film, between the bubble and wall interfaces. Recently, Klaseboer et al. (2014) 
developed the force balance model, where, for the first time, the added mass variations were included 
in calculations of a rate of liquid film drainage. Creating this model, he considered that the Cm increases 
during the bubble approach to the solid surface, what influences the inertial force, having significant 
effect on velocity of drainage of the liquid film. For the sphere, an approximate analytic relation for 
variations of Cm was given (Klaseboer et al., 2014): 

𝐶�(𝑏) = 0.5 + 0.19222H b
^U
K
pO.�9�

+ 0.06214 H b
^U
K
ps.OO9

+ 0.0348 H b
^U
K
p:r.�g

+ 0.0139H b
^U
K
p9:�.�

       (23) 

where b is the position of the bubble geometrical center in respect to the wall.  
Fig. 8 presents the variations of the normalized added mass coefficient of the bubble approaching to 

horizontal wall with various degree of deformations. The distance of separation is expressed in relation 
to the bubble radius, as a ratio between b and Rb. The position of the wall was adjusted at 𝑏/𝑅b = 0. In 
addition, the Cm was normalized to the Cm¥, i.e. for the added mass coefficient value far away from the 
wall, where the bubble was rising with terminal velocity (steady-state conditions). Let us analyze the 
influence of the bubble deformation on Cm variations. These data are illustrated in Fig. 8 by two solid 
(blue and red) and one short-dashed (green) lines, referring to deformation ratios c = 1.88, 1.35 and 1.10, 
respectively. As seen, differences in variations of the Cm are rather small, despite the significant 
differences in deformation of the approaching bubble. Moreover, all three presented profiles of the Cm 
variations are quite far from theoretical predictions calculated on the basis of Eq. 23 (black long-dashed 
line). Even for c = 1.10, i.e. for the bubble close to sphere, the discrepancy between predictions of Eq. 23 
and numerical calculations are significant. It is also interesting to see quite a significant difference 
between distances from the wall at which the Cm starts to increase for different bubble deformations. As 
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seen, for c = 1.10, for which the bubble velocity was the highest, increase of the Cm parameters starts at 
the |𝑏/𝑅b| = 2.8 and is shifted to ca. 2.2 for higher deformations. This shows directly different timescale 
of liquid film formation, which is formed “earlier” for the bubble approaching to the wall with higher 
velocity. 

The presented results show that the deformation of the bubble is important parameter for added 
mass variations in the proximity of the solid wall. The added mass variation is the interplay between 
bubble deformation and its velocity, which determines the kinetic energy of fluid motion and viscous 
energy dissipation is a gap between liquid/gas and liquid/solid interface. This, in turn, is crucial for 
kinetics of drainage of the liquid film formed under dynamic conditions. 

 
Fig. 8. Normalized added mass coefficient of the bubble of different deformation degrees (see figure legend),  

approaching to the horizontal no-slip wall 

5. Conclusions 

On the basis of numerical calculations, influence of the air bubble deformation degree on motion 
parameters was modeled. It was shown that the bubble deformation can be tuned via proper variations 
of the Laplace pressure, without changing the bubble radius. The deformation ratio of the bubble was 
decreased nearly twice (from ca. 1.88 to 1.10) when the Laplace pressure was increased from 54 to 1351 
Pa. The velocity of the bubble followed opposite trend, i.e. was increased with increasing pressure 
values, showing how crucial is the bubble deformation for its hydrodynamics. Approach allowing 
determination of the added mass coefficient of the bubble, on the basis of bubble motion induced fluid 
kinetic energy, was proposed and the results of calculations were compared with the literature data. It 
was shown that the calculation results regarding influence of the bubble deformation on the drag and 
the added mass coefficients for steady-state conditions, stay in good agreement with theoretical 
predictions shown earlier in the literature. Additionally, the variations of the added mass coefficient 
were calculated for the bubble approaching to the horizontal wall. It was shown that increase in the 
bubble added mass in this case strongly depends on the interplay between (i) bubble deformation 
degree and (ii) velocity of approach. The influence of these two parameters is strictly connected and 
should be always considered inseparably. These two factors influence significantly the bubble added 
mass, and play crucial role in formation and drainage of the liquid film formed under dynamic 
conditions. 
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